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Abstract—Future communication subsystems of space explora-
tion missions can potentially benefit from software-defined radios
(SDRs)controlled by machine learning algorithms. In this paper,
we propose a novel hybrid radio resource allocation management
control algorithm that integrates multi-objective reinforcement
learning and deep artificial neural networks. The objective
is to efficiently manage communications system resources by
monitoring performance functions with common dependent va-
riables that result in conflicting goals. The uncertainty in the
performance of thousands of different possible combinations
of radio parameters makes the trade-off between exploration
and exploitation in reinforcement learning (RL) much more
challenging for future critical space-based missions. Thus, the
system should spend as little time as possible on exploring
actions, and whenever it explores an action, it should perform
at acceptable levels most of the time. The proposed approach
enables on-line learning by interactions with the environment
and restricts poor resource allocation performance through
‘virtual environment exploration’. Improvements in the multi-
objective performance can be achieved via transmitter parameter
adaptation on a packet-basis, with poorly predicted performance
promptly resulting in rejected decisions. Simulations presented in
this work considered the DVB-S2 standard adaptive transmitter
parameters and additional ones expected to be present in future
adaptive radio systems. Performance results are provided by
analysis of the proposed hybrid algorithm when operating across
a satellite communication channel from Earth to GEO orbit
during clear sky conditions. The proposed approach constitutes
part of the core cognitive engine proof-of-concept to be delivered
to the NASA Glenn Research Center SCaN Testbed located on-
board the International Space Station.
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Fig. 1: Hybrid multi-objective reinforcement learning and deep
neural network (RLNN) block diagram. ‘Virtual exploration’,
driven by ‘action rejection’ probability, prevents time expendi-
ture exploring “bad actions” using radio resources over-the-air.

tificial intelligence, reinforcement learning, neural networks,
cognitive radio, space communication, SCaN Testbed, NASA
GRC

I. INTRODUCTION

Software-defined radio (SDR) [1], a communications
technology that is frequently used in terrestrial applications,
has only started to appear in space as part of a testbed
located on-board the International Space Station (ISS) in 2012
through a research project initiative proposed, developed, and
led by the Space Communications and Navigation group at the
NASA John H. Glenn Research Center [2–5]. Known as SCaN
Testbed, it is comprised of three SDRs operating at S-band and
Ka-band.

As discussed in [6, 7], the flexibility enabled by SDRs
also bring complexity to operations. The radios have a large

https://ntrs.nasa.gov/search.jsp?R=20170007958 2020-05-06T07:31:22+00:00Z



number of parameters to modify link configurations and to
improve performance, but these changes could add risk to
a mission through operator burden or misconfiguration To
reduce the complexity of SDRs, optimize the performance
and operation of SDR communications, and investigate au-
tonomous communications operations these on-orbit flexible
radios are now being used to enable research on cognitive
space communications, the next frontier on communications
systems.

These on-orbit flexible radios are now being used to enable
research on cognitive space communications, which is the next
frontier in communications systems. A cognitive radio [8],
which possesses environmental awareness across different
network layers [9], is capable of autonomously performing
perception, learning, and reasoning activities in order to opti-
mize resource allocations on individual nodes or distributed
throughout the network based on its current hardware and
software capabilities, channel conditions, mission phases, and
network conditions.

For instance, several technologies have been developed in
order to achieve a full cognition level. At a very basic level,
currently they enable: (i) radio parameter adaptation such
as conventional adaptive coding and modulation (ACM) [10]
employed by standard such as DVB-S2 in order to mitigate
fading [11], and (ii) spectrum sensing for dynamic channel
access by optimizing spectrum utilization of temporarily va-
cant frequencies [12–14].

In order to enable full cognition in radios, machine le-
arning [15–17] has become an important technology in wi-
reless communications, especially with respect to leveraging
online learning methods. Several techniques for performing
resource allocation optimization have been proposed in the
open literature, including genetic algorithms (GA) [18]. The
main drawback of these techniques is the convergence time,
including no convergence guarantee for online operations
over dynamic channels. Additionally, learning is not conveyed
over time and each different channel condition requires the
algorithm be executed. Knowing when to exploit a certain
action, recognizing a different channel condition, and running
the GA again could potentially result in spending the majority
of time on exploring radio parameter sets possessing poor
performance, herein referred to as actions. Techniques such
as these, in their purest form, seem unfeasible for critical
space-based missions due to the challenging dynamic envi-
ronments affecting the channel between the spacecraft and
the ground station [19–21]. Recently, research on machine-
learning techniques with cognitive radios via a case study have
focused on the learning problem [15, 16], with the majority of
the research being focused on terrestrial cognitive radios [17]
or on space communications resource allocation [22] and
spectrum sensing [12, 13].

Seeking to tackle the learning problem for space communi-
cation systems, a solution was proposed in [22] for optimizing
conflicting multi-objectives when selecting multi-dimensional
radio resource allocations for space communications. In this
case, a pure Reinforcement Learning (RL) [23, 24] solution

was considered. In this work, we build upon that solution in
order to solve the problem of the RL spending too much time
on exploring actions that result in low performance scores.
We also propose a hybrid algorithm comprising of a RL
and neural network [25]. Known as RLNN, this proposed
algorithm enables the radio to predict the effects of multi-
dimensional radio parameters on multi-dimensional conflicting
performance goals before allowing the radio to actually try
these parameters over the air, avoiding the cost of spending
time and resources on learning action–performance mapping
that will not be useful in the near future.

This paper is organized as follows: Section II provides a
brief overview of the machine learning techniques used to
build the proposed hybrid solution, Section III describes the
proposed RLNN algorithm, Section IV presents simulation
results, and Section V provides concluding remarks.

II. MACHINE LEARNING OVERVIEW

Machine learning (ML) defines a set of techniques that
allows computer systems to learn certain tasks after being
presented with several examples. There are three main ML
categories: (i) supervised learning, (ii) unsupervised learning,
and (iii) reinforcement learning [23, 24]. The basic difference
between (i) and (ii) is that in (i) the examples are labeled
and in (ii) the examples do not have labels. These algorithms
are trained for classification, such as pattern recognition or
regression such as in function approximation. RL is a special
case in which the algorithm learns how to achieve goals by
interacting with an uncertain environment. Below we briefly
describe (i) and (iii) in more detail.

A. Neural Networks Overview

An artificial neural network (NN) is a method for mapping
inputs to outputs and usually is used for classification, such
as in pattern-recognition problem, or for use in non-linear
function approximation such as in function fitting [25]. For
instance, in this paper, a NN is used to approximate the
non-linear environmental effects by mapping actions into
rewards. Several improvements have been made to the NN
algorithms, which is composed of two main steps: training
and prediction. Initially, examples containing input and output
data are preprocessed and provided to the NN for training.
After meeting some minimum performance requirements, the
trained NN, which consists basically of the NN architecture
and its weights, can be used as a predictor.

For a detailed description of NN basics, derivations, and
algorithm details, the interested reader is referred to Chapter
6 in [26]. When using NNs, each different problem requires
a specific NN architecture, comprised of a training function;
performance metrics, a number and size of hidden layers such
that its usage becomes feasible for the desired application in
terms of required processing capabilities and processing time,
and generalization of error performance. Currently, there are
no general guidelines in the literature on how to pick these
items. Reference [27] provides some useful comments and
advice on what to consider when making these decisions.



In this paper, we consider the standard multi-layer fully
connected NN trained by a backpropagation-based algorithm.
More details on the chosen NN architecture are provided in
Section III.

B. Reinforcement Learning Overview

The contents of this section provide a brief summary of
relevant concepts underpinning RL found in [23] for the
proposed algorithms presented in the following sections. RL
is an algorithm designed to learn through interactions with
the environment in a trial-and-error fashion, shown in Fig. 1.
Based on predefined goals, RL looks for actions that optimize
its performance.

The Multi-armed bandit (MAB) [28–31] models RL pro-
blems in which an action set results in rewards, which repre-
sents a measurement of how well a certain task was executed.
Thus, it can be seen as an optimization problem to find the
action set that results in the maximum reward.

Instead of using MAB, these problems could be modeled as
state-transition problems. The state-transition itself is modeled
as a Markov decision process (MDP) [32]. State-transitions
can be deterministic, i.e., executing a certain action will always
lead the system to that same state, as assumed in this paper,
or it will make the next state to behave as a random variable.

Usually control problems require the computation of an
optimal policy that maps observed states into actions that
will be taken when the system is in one of those states.
Thus, the work presented in this paper is concerned about
controlling radio parameters such that optimal performance
is achieved based on the current environmental conditions
and kept there for the entire time, such as regulator. The
environment is comprised of the satellite communications
channel through which propagating signals are affected by the
dynamic geometry of the line-of-sight between the transmitter
and the receiver and its surroundings (buildings in the vicinity
of the ground stations or structures in the vicinity of the
antennas on-board the spacecraft), as well as the dynamics
of the atmospheric and space weather. Therefore, a state-
transition model and the action-state mapping takes all these
variables into account and it is assumed to be unknown due
to its high level of complexity.

Fortunately, there are several techniques to compute poli-
cies, for which most of the time the environment model, i.e.,
state-transition model, is unknown due to being too complex or
difficult to obtain. In this case, the agent must interact with the
environment in an efficient way to find the best policy possible
while balancing exploration of new actions and exploitation
of known actions. In these cases, an action-value function
Qπ(s, a) representing the value of a certain action a taken
when in state s while following policy π, should be evaluated
for all actions possible from state s through a greedy policy
given by:

π(s) = arg max
a

Q(s, a), (1)

where for every state s ∈ S an action a ∈ A with maximal
action-value is chosen given the state space S and action

space A. For several problems with either a continuous or
discrete A containing thousands of actions a, it may not be
feasible to evaluate all action-values when in a certain state s.
This is the case of radio communications, for which exploring
each action a over the air may take time and force the radio
receiver to experience a certain performance degradation. The
practical alternative is to ensure that the agent keeps exploring
them using either on-policy or off-policy approaches. On-
policy approaches evaluate or improve policies used to make
decisions, whereas off-policy methods evaluate or improve a
policy that is learned about, known as a target policy, that is
different from a policy used to generate behavior, known as a
behavior policy [23].

A common model-free method to find these policies is
Temporal-Difference (TD), which updates the action-value
function Q(s, a) using past experiences at each time step,
suitable for on-line, i.e., time-sensitive applications. The on-
policy TD control is known as State-Action-Reward-State-
Action (SARSA) and updates Q by computing:

Qk+1(sk, ak) = Qk(sk, ak) +

α[r + γQ(sk+1, ak+1)−Q(sk, ak)],
(2)

where α is the learning rate, r is the reward, γ is the discount
factor, sk+1 and ak+1 are the state and action chosen the
current target policy, before the Q update. The difference
within the brackets in Eq. (2) is known as the TD error,
and it computes the difference between the estimated value
of Q(sk, ak) and a better estimate, r+γQk(sk+1, ak+1). The
off-policy TD control algorithm is known as Q-learning and
is computed by:

Qk+1(sk, ak) = Qk(sk, ak) +

α[r + γmax
a

Qk(sk+1, a)−Qk(sk, ak)],

(3)

where the TD error uses the Q-value with the highest value
independent of the action. Eqs. (2) and (3) are derived from
the well-known Bellman equations [23, 32].

As mentioned in [22], within the context of decision-making
in radio communications, the discounted factor does not have a
practical meaning since the cognitive radio is interested in the
immediate reward (γ = 0) and any action can be taken from
any state without the need for planning. These assumptions
result in a modified version of the Q-value functions for both
on- and off-policy, which turn out to be the same, given by:

Qk+1(sk, ak) = Qk(sk, ak) + α[rk −Qk(sk, ak)]. (4)

Even though the state-transition model is unknown, several
functions need to be defined, for instance, the action explo-
ration function, the state-action policy function h used in
ak = h(sk), and the reward function ρ, used in r = ρ(sk, ak).

III. PROPOSED SOLUTION

The proposed hybrid method consists of the RL menti-
oned in Section II-B, which as proposed in [22], and the
standard multi-layer NN mentioned in Section II-A, herein



referred to as as NN-based RL, or RLNN. It considers a
multi-dimensional parameter optimization of radio configura-
tions seeking to achieve the best multi-objective performance
possible given the current satellite communication channel
conditions.

The NN is used as an approximation of the environment
in terms of the RL experience, the chosen actions, and its
respective rewards achieved so far. By having the luxury of
approximating the mapping of actions into states and rewards,
the NN allows for actions to be explored all at once, or as
many as one would like to, without having to actually spend
time trying those actions in the real environment. We call this
new approach ‘virtual exploration.’ It improves the exploration
performance by removing the time the RL agent would spend
exploring actions that are predicted to yield poor performance.
This additional feature is called ‘action rejection’.

Poor actions are defined by a ‘rejection performance thres-
hold’ value defined by the user such that actions resulting in
performance below that threshold are classified as poor. The
action rejection probability defines the time percentage that
bad actions will be rejected during exploration, i.e., prevented
from being used over the air by the radio. Whenever the
RL agent is exploring, it predicts the actions’ performance
using the trained NN and classifies them into either good or
bad. Then, according to the rejection probability it randomly
chooses one action from either a good or bad set.

Regarding the NN architecture, a feedforward with
Levenberg-Marquardt backproapgation training algorithm des-
cribed in [33, 34] was used. The NN has three fully-connected
layers without bias: two hidden layers that contain 7 and 50
neurons each, both using a log-sigmoid transfer function, and
the output layer with one neuron using the standard linear
transfer function. With respect to the performance function, the
mean-squared error was used with two different training stop
conditions: minimum error gradient of 10−12 and maximum
validation checks equal to 20. During training, the data was
randomly split into 70% for training, 15% for testing, and 15%
for validation, all scaled across a [−1, 1] range.

In order to improve the NN prediction error, an ensemble
of 20 NNs were used during both training and prediction, as
shown in Fig. 2, and the output was simply the average among
all these NNs. The reason for the choice of this amount of
NNs constituting the ensemble is also made using the mean-
square error as a performance metric, similar to the way the
NN architecture itself is chosen, due to the lack of a more
formal theoretical method.

This hybrid approach is depicted in Fig. 1 where the RL
interacts with the ensemble of NNs, receiving the same actions
sent to the environment and the same rewards and state
information from the environment during training. When used
for prediction, this information is exchanged only with the
RL agent, avoiding the cost of executing such actions in the
real-world environment.

Fig. 2: Deep neural networks used for ensemble learning of
radio transmitter parameters, represented by multi-dimensional
actions, and their mapping into multi-objective reinforcement
learning performance, represented by rewards.

IV. SIMULATION RESULTS

In order to comply with the DVB-S2 standard, the radio-
adaptable parameters are the same as defined in [11], con-
sidering all four modulation schemes (QPSK, 8-PSK, 16-
APSK, and 32-APSK) and their respective encoding schemes.
In addition to all roll-off factors, the following were consi-
dered: bandwidth range of [0.5− 5 MHz], additional variable
transmission symbol power range of [0 − 10 dB] in steps of
1 dB, and long-frame with frame length equal to 64,800 bits.
The action space is comprised of more than 30,400 possible
actions. Each action vector ā is composed of six parameters
an, where n = 1, · · · , 6: symbol rate (Rs), energy per symbol
(Es), roll-off factor (rof), modulation order (M), number of
bits per symbol (k), and encoding rate (er).

The GEO satellite channel is assumed to be an AWGN
during clear sky conditions, with adaptation taking place on the
downlink to a fixed ground station only, similar to the channel
presented by the authors in [22]. In these simulations, for
proof-of-concept purposes it was assumed that the satellite’s
transmitter amplifier operates in the close-to-linear region.

Regarding performance, the conflicting multi-objective tar-
get considered is comprised of six parameters: bit error rate
(BER) estimated at the receiver, throughput (Thrp), band-
width (BW), spectral efficiency (Spc eff), consumed power
(Pwr con), and power efficiency (Pwr eff) measured at the
transmitter and sent over to the receiver, all of which are scaled
to the range of [0, 1]. The reward function ρ is computed by
the fitness function fobs given by the weighted sum computed
by:

fobs(x) =w1fThrp + w2fBER + w3fBW+

w4fSpc eff + w5fPwr eff + w6fPwr con,
(5)

where x is a vector containing the performance parameters,
described above, and the weights wi for each performance
parameter, specified according to each different communicati-
ons mission and defined by the user. The following simulation
results considered all wi = 1/6.

As mentioned in Section II-B, the action exploration functi-
ons used in this paper are: (i) constant exploration probability
ε = 0.5 and the well-known ε-greedy exploration algo-
rithm [35, 36] with variable exploration probability ε = 1/k,
where k is the step size between resets of ε back to 1 whenever
it reaches a minimum, in this case assumed to be equal to
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Fig. 3: Boxplots of proposed RLNN algorithm multi-objective performances. On the left panels virtual exploration was turned
off (likewise the authors’ algorithm proposed in [22] considering the DVB-S2 standard), and on the right panels it was turned
on with rejection probability equal to 1. Top panels used fixed exploration probability value equal to 0.5, and bottom panels
used the variable exploration probability function. High number of packets concentrated around larger fitness scores is better.

4 × 10−3. In this proposed hybrid solution, the state-action
policy function h is approximated by the NN during virtual
exploration followed by uniform random sampling between
the bad and good action sets, based on the rejection proba-
bility value. During exploration, h is greedy and chooses the
action with the maximum Q-value, computed by Eq. (4), with
αk = αk−1/2, another user-defined parameter that decreases
from 1 until it meets a threshold of 10−3, when it gets reset.

Simulations were run for the hybrid RLNN algorithm
proposed in this paper and for a modified version of the
RL algorithm proposed by the authors in [22], this time
considering DVB-S2 and additional adaptable parameters as
mentioned above. Fig. 3 presents the average distribution
of the amount of network packets according to their fitness
score for both algorithms while using exploration probabi-
lities equal to ε = 0.5 and ε = 1/k. This distribution
accounts for performance during exploration only. A total
of 100 simulations were run for each of the four different
configurations (combinations between exploration functions
and virtual exploration set on/off), with the same simulation
duration of 512 seconds. Even though the channel considered
in these simulations is assumed constant over time (no slow or
fast fading), this time duration represents the average duration
of a LEO orbit and may allow performance comparisons to be
done in future research by the authors.

As expected, the introduction of the NN for virtual explo-
ration allows the radio to drastically decrease the time spent,
and consequently the number of packets, on exploring actions
that resulted in poor performance when compared to the max-
imum performance achieved while rejecting all those actions
predicted to perform below a threshold. This improvement can
be seen as a shift to the left on the distributions shown on the
right-hand side panels in Fig. 3. For these results the rejection
performance threshold was considered to be equal to 95% of
the current maximum performance predicted by the NN. The
virtual exploration feature was disabled and enabled by setting
the rejection probability to 0 and 1, respectively, meaning that
0 no action is to be rejected and 1 all actions with performance
below the selected performance threshold will be rejected.

In terms of resultant numerical performance, in scenarios
with virtual exploration disabled, the average number of pac-
kets experiencing multi-objective performance values above
0.56 when using a fixed and variable exploration probability
values, was 33% and 25% respectively, as shown by Fig. 3
panels (a) and (c). In both scenarios, the majority of packets
experienced a performance score value of 0.485.

However, in scenarios with virtual exploration enabled,
the average number of packets experiencing multi-objective
performance values above 0.56 when using a fixed and
variable exploration probability values, was 82% and 98%,



Fig. 4: Boxplot of the genetic algorithm multi-objective per-
formance during the same time duration used by the proposed
RLNN simulations. The majority of the time is spent in very
low performance levels.

respectively, as shown by Fig. 3 panels (b) and (d). In both
scenarios, the majority of packets experienced a performance
score value of 0.685. This represents an improvement on
number of packets experiencing performance values above
0.56 of 2.48 times and 3.92 times for fixed and variable
exploration probabilities, respectively.

In terms of the integral values of the average of histo-
grams, both scenarios with virtual exploration disabled have
an integral equal to 0.472, while the scenarios with that
feature enabled have an integral equal to 0.67 and 0.62,
for fixed and variable exploration values, respectively. Thus,
improvements of 1.32 times and 1.42 times on the integral
values were achieved by the proposed RLNN for fixed and
variable exploration probability values, respectively.

It should be noted that using a fixed exploration proba-
bility value, the amount of packets used during exploration
represented 50.58% and 50.7% of the total for scenarios with
and without virtual exploration, respectively. When using the
variable exploration function these percentage values were
3.17% and 3.12%, respectively. These values combined with
the distributions shown in Fig. 3 and with the improvements
on the integral values demonstrates the effectiveness of the
proposed virtual exploration in increasing the number of
packets experiencing high multi-objective performance values
independently of the exploration probability function chosen.

For comparison, a GA simulation was run for 100 times,
each with the same time duration of the RLNN simulati-
ons mentioned above. Its average performance distribution is
shown in Fig. 4. Although it was able to achieve higher per-
formance scores than the proposed RLNN, the cost to achieve
that was to spend 66% of the time exploring actions that
resulted in very low performance values, scored between 0.18
and 0.26. Only 0.8% of the time was spent on performance
values between 0.69 and 0.81.

Batch methods, such as GA approaches, might have an
advantage over the standard RL and our proposed RLNN
for the cases when the environment remains constant and/or
the system can spend a long time exploring a large number

of different actions, resultant from different GA generations.
However, if the environment changes, a reset may be required,
which will result in the system having to spend a considerable
amount of time experiencing low performance values after
restarting the search again. If the system can not wait until
the GA convergence, it might stick with using an action that
can have any performance level.

Even though evolutionary methods might be good as se-
arching methods, they do not guarantee a minimum perfor-
mance. Our proposed RLNN method does not guarantee a
specific performance level either. However, through virtual
exploration it provides guidance to which actions to explore,
giving control over the performance levels experienced during
exploration by performing action rejection. In addition to that,
through the rejection probability value, the RLNN provides
control over the amount of time spent on actions that may
result in a certain performance level.

V. CONCLUSIONS

In this paper, a hybrid learning architecture for multi-
objective radio resource allocation was proposed using reinfor-
cement learning and neural networks, resulting in the RLNN
algorithm. The main goal of this architecture is to provide
control over which actions to be explored based on their
predicted multi-objective performance, as well as to control
the time spent on exploring actions with performance values
above a threshold defined by the user.

Simulations were run for scenarios with fixed and time-
varying exploration probabilities, considering a satellite equip-
ped with DVB-S2-compliant adaptable radios and an AWGN
channel, assuming reconfiguration on the return link only. In
scenarios with virtual exploration enabled, the the majority of
packets experienced a performance score value very close to
the maximum score values achieved throughout the simulation,
independently of the exploration function being used.

Numerical simulation results showed that the proposed
RLNN algorithm improves of 2.48 times and 3.92 times the
number of packets experiencing performance values above
0.56 for fixed and variable exploration probabilities, respecti-
vely, when the assumptions made are considered. An overall
improvement of 1.32 times and 1.42 times on the integral
values of the average performance distribution curves for these
two scenarios also demonstrate that a larger amount of packets
have their performance values concentrated around higher
values during exploration.

Since there was no difference in performance regarding
the exploration probability functions used, future research
or applications might consider using the proposed RLNN
algorithm with different exploration strategies and still take
advantage of the improvements shown in this paper.
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